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Abstract

Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st,

2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths

have been reported in China up to February 10, 2020, evoking fear locally and internation-

ally. Here, based on the publicly available epidemiological data for Hubei, China from Janu-

ary 11 to February 10, 2020, we provide estimates of the main epidemiological parameters.

In particular, we provide an estimation of the case fatality and case recovery ratios, along

with their 90% confidence intervals as the outbreak evolves. On the basis of a Susceptible-

Infectious-Recovered-Dead (SIDR) model, we provide estimations of the basic reproduction

number (R0), and the per day infection mortality and recovery rates. By calibrating the

parameters of the SIRD model to the reported data, we also attempt to forecast the evolution

of the outbreak at the epicenter three weeks ahead, i.e. until February 29. As the number of

infected individuals, especially of those with asymptomatic or mild courses, is suspected to

be much higher than the official numbers, which can be considered only as a subset of the

actual numbers of infected and recovered cases in the total population, we have repeated

the calculations under a second scenario that considers twenty times the number of con-

firmed infected cases and forty times the number of recovered, leaving the number of deaths

unchanged. Based on the reported data, the expected value of R0 as computed considering

the period from the 11th of January until the 18th of January, using the official counts of con-

firmed cases was found to be�4.6, while the one computed under the second scenario was

found to be�3.2. Thus, based on the SIRD simulations, the estimated average value of R0

was found to be�2.6 based on confirmed cases and�2 based on the second scenario. Our

forecasting flashes a note of caution for the presently unfolding outbreak in China. Based on

the official counts for confirmed cases, the simulations suggest that the cumulative number

of infected could reach 180,000 (with a lower bound of 45,000) by February 29. Regarding

the number of deaths, simulations forecast that on the basis of the up to the 10th of February

reported data, the death toll might exceed 2,700 (as a lower bound) by February 29. Our

analysis further reveals a significant decline of the case fatality ratio from January 26 to

which various factors may have contributed, such as the severe control measures taken

in Hubei, China (e.g. quarantine and hospitalization of infected individuals), but mainly

because of the fact that the actual cumulative numbers of infected and recovered cases in
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the population most likely are much higher than the reported ones. Thus, in a scenario

where we have taken twenty times the confirmed number of infected and forty times the con-

firmed number of recovered cases, the case fatality ratio is around�0.15% in the total popu-

lation. Importantly, based on this scenario, simulations suggest a slow down of the outbreak

in Hubei at the end of February.

Introduction

An outbreak of “pneumonia of unknown etiology” in Wuhan, Hubei Province, China in early

December 2019 has spiraled into an epidemic that is ravaging China and threatening to reach

a pandemic state [1]. The causative agent soon proved to be a new betacoronavirus related to

the Middle East Respiratory Syndrome virus (MERS-CoV) and the Severe Acute Respiratory

Syndrome virus (SARS-CoV). The novel coronavirus SARS-CoV-2 disease has been named

“COVID-19” by the World Health Organization (WHO) and on January 30, the COVID-19

outbreak was declared to constitute a Public Health Emergency of International Concern by

the WHO Director-General [2]. Despite the lockdown of Wuhan and the suspension of all

public transport, flights and trains on January 23, a total of 40,235 confirmed cases, including

6,484 (16.1%) with severe illness, and 909 deaths (2.2%) had been reported in China by the

National Health Commission up to February 10, 2020; meanwhile, 319 cases and one death

were reported outside of China, in 24 countries [3].

The origin of COVID-19 has not yet been determined although preliminary investigations

are suggestive of a zoonotic, possibly of bat, origin [4, 5]. Similarly to SARS-CoV and MERS-

CoV, the novel virus is transmitted from person to person principally by respiratory droplets,

causing such symptoms as fever, cough, and shortness of breath after a period believed to

range from 2 to 14 days following infection, according to the Centers for Disease Control and

Prevention (CDC) [1, 6, 7]. Preliminary data suggest that older males with comorbidities may

be at higher risk for severe illness from COVID-19 [6, 8, 9]. However, the precise virologic and

epidemiologic characteristics, including transmissibility and mortality, of this third zoonotic

human coronavirus are still unknown.

Using the serial intervals (SI) of the two other well-known coronavirus diseases, MERS and

SARS, as approximations for the true unknown SI, Zhao et al. estimated the mean basic repro-

duction number (R0) of SARS-CoV-2 to range between 2.24 (95% CI: 1.96-2.55) and 3.58 (95%

CI: 2.89-4.39) in the early phase of the outbreak [10]. Very similar estimates, 2.2 (95% CI: 1.4-

3.9), were obtained for R0 at the early stages of the epidemic by Imai et al. 2.6 (95% CI: 1.5-3.5)

[11], as well as by Li et al., who also reported a doubling in size every 7.4 days [1]. Wu et al. esti-

mated the R0 at 2.68 (95% CI: 2.47–2.86) with a doubling time every 6.4 days (95% CI: 5.8–7.1)

and the epidemic growing exponentially in multiple major Chinese cities with a lag time

behind the Wuhan outbreak of about 1–2 weeks [12].

Amidst such an important ongoing public health crisis that also has severe economic reper-

cussions, we reverted to mathematical modelling that can shed light to essential epidemiologic

parameters that determine the fate of the epidemic [13]. Here, we present the results of the

analysis of time series of epidemiological data available in the public domain [14–16] (WHO,

CDC, ECDC, NHC and DXY) from January 11 to February 10, 2020, and attempt a three-

week forecast of the spreading dynamics of the emerged coronavirus epidemic in the epicenter

in mainland China.
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Methodology

Our analysis was based on the publicly available data of the new confirmed daily cases reported

for the Hubei province from the 11th of January until the 10th of February [14–16]. Based on

the released data, we attempted to estimate the mean values of the main epidemiological

parameters, i.e. the basic reproduction number R0, the case fatality (ĝ) and case recovery (b̂)

ratios, along with their 90% confidence intervals. However, as suggested [17], the number of

infectious, and consequently the number of recovered, people is likely to be much higher.

Thus, in a second scenario, we have also derived results by taking twenty times the number of

reported cases for the infectious and forty times the number for the recovered cases, while

keeping constant the number of deaths that is more likely to be closer to the real number. Fur-

thermore, by calibrating the parameters of the SIRD model to fit the reported data, we also

provide tentative forecasts until the 29th of February.

The basic reproduction number (R0) is one of the key values that can predict whether the

infectious disease will spread into a population or die out. R0 represents the average number of

secondary cases that result from the introduction of a single infectious case in a totally suscep-

tible population during the infectiousness period. Based on the reported data of confirmed

cases, we provide estimations of the R0 from the 16th up to the 20th of January in order to sat-

isfy as much as possible the hypothesis of S� N that is a necessary condition for the computa-

tion of R0.

We also provide estimations of the case fatality (ĝ) and case recovery (b̂) ratios over the

entire period using a rolling window of one day from the 11th of January to the 16th of January

to provide the very first estimations.

Furthermore, we calibrated the parameters of the SIRD model to fit the reported data. We

first provide a coarse estimation of the recovery (β) and mortality rates (γ) of the SIRD model

using the first period of the outbreak. Then, an estimation of the infection rate α is accom-

plished by “wrapping” around the SIRD simulator an optimization algorithm to fit the

reported data from the 11th of January to the 10th of February. We have started our simula-

tions with one infected person on the 16th of November, which has been suggested as a start-

ing date of the epidemic and run the SIR model until the 10th of February. Below, we describe

analytically our approach.

Let us start by denoting with S(t), I(t), R(t), D(t), the number of susceptible, infected, recov-

ered and dead persons respectively at time t in the population of size N. For our analysis, we

assume that the total number of the population remains constant. Based on the demographic

data for the province of Hubei N = 59m. Thus, the discrete SIRD model reads:

SðtÞ ¼ Sðt � 1Þ �
a

N
Sðt � 1ÞIðt � 1Þ ð1Þ

IðtÞ ¼ Iðt � 1Þ þ
a

N
Sðt � 1ÞIðt � 1Þ � bIðt � 1Þ � gIðt � 1Þ ð2Þ

RðtÞ ¼ Rðt � 1Þ þ bIðt � 1Þ ð3Þ

DðtÞ ¼ Dðt � 1Þ þ gIðt � 1Þ ð4Þ

The above system is defined in discrete time points t = 1, 2, . . ., with the corresponding ini-

tial condition at the very start of the epidemic: S(0) = N − 1, I(0) = 1, R(0) = D(0) = 0. Here, β
and γ denote the “effective/apparent” per day recovery and fatality rates. Note that these

parameters do not correspond to the actual per day recovery and mortality rates as the new
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cases of recovered and deaths come from infected cases several days back in time. However,

one can attempt to provide some coarse estimations of the “effective/apparent” values of these

epidemiological parameters based on the reported confirmed cases using an assumption and

approach described in the next section.

Estimation of the basic reproduction number from the SIRD model

Let us first start with the estimation of R0. Initially, when the spread of the epidemic starts, all

the population is considered to be susceptible, i.e. S� N. Based on this assumption, by Eqs (2),

(3) and (4), the basic reproduction number can be estimated by the parameters of the SIRD

model as:

R0 ¼
a

bþ g
ð5Þ

Let us denote with ΔI(t) = I(t) − I(t − 1), ΔR(t) = R(t) − R(t − 1), ΔD(t) = D(t) − D(t − 1), the

reported new cases of infectious, recovered and dead at time t, with CΔI(t), CΔR(t), CΔD(t) the

cumulative numbers of confirmed cases at time t. Thus:

CDXðtÞ ¼
Xt

i¼1

DXðtÞ; ð6Þ

where, X = I, R, D.

Let us also denote by Δ X(t) = [ΔX(1), ΔX(2), � � �, ΔX(t)]T the t × 1 column vector contain-

ing all the reported new cases up to time t and by C Δ X(t) = [CΔX(1), CΔX(2), � � �, CΔX(t)]T,

the t × 1 column vector containing the corresponding cumulative numbers up to time t. On

the basis of Eqs (2), (3) and (4), one can provide a coarse estimation of the parameters R0, β
and γ as follows.

Starting with the estimation of R0, we note that as the province of Hubei has a population of

59m, one can reasonably assume that for any practical means, at least at the beginning of the

outbreak, S� N. By making this assumption, one can then provide an approximation of the

expected value of R0 using Eqs (5), (2), (3) and (4). In particular, substituting in Eq (2), the

terms βI(t − 1) and γI(t − 1) with ΔR(t) = R(t) − R(t − 1) from Eq (3), and ΔD(t) = D(t) −
D(t − 1) from Eq (4) and bringing them into the left-hand side of Eq (2), we get:

IðtÞ � Iðt � 1Þ þ RðtÞ � Rðt � 1Þ þ DðtÞ � Dðt � 1Þ ¼
a

N
Sðt � 1ÞIðt � 1Þ ð7Þ

Adding Eqs (3) and (4), we get:

RðtÞ � Rðt � 1Þ þ DðtÞ � Dðt � 1Þ ¼ bIðt � 1Þ þ gIðt � 1Þ ð8Þ

Finally, assuming that for any practical means at the beginning of the spread that S(t − 1)�

N and dividing Eq (7) by Eq (8) we get:

IðtÞ � Iðt � 1Þ þ RðtÞ � Rðt � 1Þ þ DðtÞ � Dðt � 1Þ

RðtÞ � Rðt � 1Þ þ DðtÞ � Dðt � 1Þ
¼

a

bþ g
¼ R0 ð9Þ

Note that one can use directly Eq (9) to compute R0 with regression, without the need to

compute first the other parameters, i.e. β, γ and α.

At this point, the regression can be done either by using the differences per se, or by using

the corresponding cumulative functions (instead of the differences for the calculation of R0

using Eq (9)). Indeed, it is easy to prove that by summing up both sides of Eqs (7) and (8) over

time and then dividing them, we get the following equivalent expression for the calculation of
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R0.

CDIðtÞ þ CDRðtÞ þ CDDðtÞ
CDRðtÞ þ CDDðtÞ

¼
a

bþ g
¼ R0 ð10Þ

Here, we used Eq (10) to estimate R0 in order to reduce the noise included in the differ-

ences. Note that the above expression is a valid approximation only at the beginning of the

spread of the disease.

Thus, based on the above, a coarse estimation of R0 and its corresponding confidence inter-

vals can be provided by solving a linear regression problem using least-squares problem as:

R̂0 ¼ ð½CDRðtÞ þ CDDðtÞ�T½CDRðtÞ þ CDDðtÞ�Þ� 1

½CDRðtÞ þ CDDðtÞ�T½CDIðtÞ þ CDRðtÞ þ CDDðtÞ�;
ð11Þ

Estimation of the case fatality and case recovery ratios for the period

January11-February 10

Here, we denote by ĝ the case fatality and by b̂ the case recovery ratios. Several approaches

have been proposed for the calculation of the case fatality ratio (see for example the formula

used by the National Health Commission (NHC) of the People’s Republic of China [18] for

estimating the mortality ratio for the COVID-19 and also the discussion in [19]). Here, we

adopt the one used also by the NHC which defines the case mortality ratio as the proportion of

the total cases of infected cases, that die from the disease.

Thus, a coarse estimation of the case fatality and recovery ratios for the period under study

can be calculated using the reported cumulative infected, recovered and dead cases, by solving

a linear regression problem, which for the case fatality ratio reads:

ĝ ¼ ½CDIðtÞTCDIðtÞ�� 1

CDIðtÞTCDDðtÞ;
ð12Þ

Accordingly, in an analogy to the above, the case recovery ratio reads:

b̂ ¼ ½CDIðtÞTCDIðtÞ�� 1

CDIðtÞTCDRðtÞ;
ð13Þ

As the reported data are just a subset of the actual number of infected and recovered

cases including the asymptomatic and/or mild ones, we have repeated the above

calculations considering twenty times the reported number of infected and forty times

the reported number of recovered in the toal population, while leaving the reported number

of dead the same given that their cataloguing is close to the actual number of deaths due to

COVID-19.

Estimation of the “effective” SIRD model parameters

Here we note that the new cases of recovered and deaths at each time time t appear with a

time delay with respect to the actual number of infected cases. This time delay is generally

unknown but an estimate can be given by clinical studies. However, one could also attempt

to provide a coarse estimation of these parameters based only on the reported data by consid-

ering the first period of the outbreak and in particular the period from the 11th of January to

the 16th of January where the number of infected cases appear to be constant. Thus, based
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on Eqs (3) and (4), and the above assumption, the “effective” per day recovery rate β and the

“effective” per day mortality rate γ were computed by solving the least squares problems (see

Eqs (2) and (4):

g ¼ ½ðCDIðt � 1Þ � CDDðt � 1Þ � CDRðt � 1ÞÞ
T

ðCDIðt � 1Þ � CDDðt � 1Þ � CDRðt � 1ÞÞ�
� 1

ðCDIðt � 1Þ � CDDðt � 1Þ � CDRðt � 1ÞÞ
T
DDðtÞ;

ð14Þ

and

b ¼ ½ðCDIðt � 1Þ � CDDðt � 1Þ � CDRðt � 1ÞÞ
T

ðCDIðt � 1Þ � CDDðt � 1Þ � CDRðt � 1ÞÞ�
� 1

ðCDIðt � 1Þ � CDDðt � 1Þ � CDRðt � 1ÞÞ
T
DRðtÞ;

ð15Þ

As noted, these values do not correspond to the actual per day mortality and recovery rates

as these would demand the exact knowledge of the corresponding time delays. Having pro-

vided an estimation of the above “effective” approximate values of the parameters β and γ, an

approximation of the “effective” infected rate α, that is not biased by the assumption of S = N,

can be obtained by using the SIRD simulator. In particular, in the SIRD model, the values of

the β and γ parameters were set equal to the ones found using the reported data solving the

corresponding least squares problems given by Eqs (14) and (15). As initial conditions we have

set one infected person on the 16th of November and ran the simulator until the last date for

which there are available data (here up to the 10th of February). Then, the optimal value of the

infection rate α that fits the reported data was found by “wrapping” around the SIRD simulator

an optimization algorithm (such as a nonlinear least-squares solver) to solve the problem:

argmin
a

f
XM

t¼1

ðw1ftða; b; gÞ
2 þ w2gtða; b; gÞ

2 þ w3htða; b; gÞ
2Þg; ð16Þ

where

ftða; b; gÞ ¼ CDISIRDðtÞ � CDIðtÞ;

gtða; b; gÞ ¼ CDRSIRDðtÞ � CDRðtÞ;

htða; b; gÞ ¼ CDDSIRDðtÞ � CDDðtÞ

where, CΔXSIRD(t), (X = I, R, D) are the cumulative cases resulting from the SIRD simulator at

time t; w1, w2, w3 correspond to scalars serving in the general case as weights to the relevant

functions. For the solution of the above optimization problem we used the function “lsqnon-

lin” of matlab [20] using the Levenberg-Marquard algorithm.

Results

As discussed, we have derived results using two different scenarios (see in Methodology). For

each scenario, we first present the results for the basic reproduction number as well as the case

fatality and case recovery ratios as obtained by solving the least squares problem using a rolling

window of an one-day step. For their computation, we used the first six days i.e. from the 11th

up to the 16th of January to provide the very first estimations. We then proceeded with the cal-

culations by adding one day in the rolling window as described in the methodology until the

10th of February. We also report the corresponding 90% confidence intervals instead of the

more standard 95% because of the small size of the data. For each window, we also report the
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corresponding coefficients of determination (R2) representing the proportion of the variance

in the dependent variable that is predictable from the independent variables, and the root

mean square of error (RMSE). The estimation of R0 was based on the data until January 20, in

order to satisfy as much as possible the hypothesis underlying its calculation by Eq (9).

Then, as described above, we provide coarse estimations of the “effective” per day recovery

and mortality rates of the SIRD model based on the reported data by solving the corresponding

least squares problems. Then, an estimation of the infection rate α was obtained by “wrapping”

around the SIRD simulator an optimization algorithm as described in the previous section.

Finally, we provide tentative forecasts for the evolution of the outbreak based on both scenar-

ios until the end of February.

Scenario I: Results obtained using the exact numbers of the reported

confirmed cases

Fig 1 depicts an estimation of R0 for the period January 16-January 20. Using the first six days

from the 11th of January, R̂0 results in� 4.80 (90% CI: 3.36-6.67); using the data until January

17, R̂0 results in� 4.60 (90% CI: 3.56-5.65); using the data until January 18, R̂0 results

in� 5.14 (90%CI: 4.25-6.03); using the data until January 19, R̂0 results in� 6.09 (90% CI:

5.02-7.16); and using the data until January 20, R̂0 results in� 7.09 (90% CI: 5.84-8.35).

Fig 2 depicts the estimated values of the case fatality (ĝ) and case recovery (b̂) ratios for

the period January 16 to February 10. The confidence intervals are also depicted with dashed

lines. Note that the large variation in the estimated values of b̂ and ĝ should be attributed

to the small size of the data and data uncertainty. This is also reflected in the corresponding

Fig 1. Scenario I. Estimated values of the basic reproduction number (R0) as computed by least squares using a

rolling window with initial date the 11th of January. The solid line corresponds to the mean value and dashed lines

to lower and upper 90% confidence intervals.

https://doi.org/10.1371/journal.pone.0230405.g001
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Fig 2. Scenario I. Estimated values of the case fatality (γ̂) and case recovery ratios (β̂) as computed by least

squares using a rolling window. Solid lines correspond to the mean values and dashed lines to lower and upper 90%

confidence intervals.

https://doi.org/10.1371/journal.pone.0230405.g002

Fig 3. Scenario I. Coefficient of determination (R2) and root mean square error (RMSE) resulting from the

solution of the linear regression problem with least-squares for the basic reproduction number (R0).

https://doi.org/10.1371/journal.pone.0230405.g003
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Fig 5. Scenario I. Coefficient of determination (R2) and root mean square error (RMSE) resulting from the

solution of the linear regression problem with least-squares for the case fatality ratio (γ̂).

https://doi.org/10.1371/journal.pone.0230405.g005

Fig 4. Scenario I. Coefficient of determination (R2) and root mean square error (RMSE) resulting from the

solution of the linear regression problem with least-squares for the case recovery ratio (β̂).

https://doi.org/10.1371/journal.pone.0230405.g004
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confidence intervals. As more data are taken into account, this variation is significantly

reduced. Thus, using all the available data from the 11th of January until the 10th of February,

the estimated value of the case fatality ratio ĝ is� 2.94% (90% CI: 2.9%-3%) and that of the

case recovery ratio b̂ is� 0.05 (90% CI: 0.046-0.055). It is interesting to note that as the avail-

able data become more, the estimated case recovery ratio increases significantly from the 31th

of January (see Fig 2).

In Figs 3, 4 and 5, we show the coefficients of determination (R2) and the root of mean

squared errors (RMSE) for R̂0 , b̂ and ĝ, respectively.

The computed approximate values of the “effective” per day mortality and recovery rates of

the SIRD model were γ� 0.01 and β� 0.064 (corresponding to a recovery period of� 15 d).

Note that because of the extremely small number of the data used, the confidence intervals

have been disregarded. Instead, for our calculations, we have considered intervals of 20%

around the expected least squares solutions. Hence, for γ, we have taken the interval (0.008

and 0.012) and for β, we have taken the interval between (0.05 and 0.077) corresponding to

recovery periods from 13 to 20 days. As described in the methodology, we have also used the

SIRD simulator to provide an estimation of the “effective” infection rate α by optimization

with w1 = 1, w2 = 2, w3 = 2. Thus, we performed the simulations by setting β = 0.064 and

γ = 0.01, and as initial conditions one infected, zero recovered and zero dead on November

Fig 6. Scenario I. Simulations until the 29th of February of the cumulative number of infected as obtained using

the SIRD model. Dots correspond to the number of confirmed cases from the 16th of January to the 10th of February.

The initial date of the simulations was the 16th of November with one infected, zero recovered and zero deaths. Solid

lines correspond to the dynamics obtained using the estimated expected values of the epidemiological parameters α =

0.191, β = 0.064d−1, γ = 0.01; dashed lines correspond to the lower and upper bounds derived by performing

simulations on the limits of the confidence intervals of the parameters.

https://doi.org/10.1371/journal.pone.0230405.g006
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16th 2019, and ran until the 10th of February. The optimal, with respect to the reported con-

firmed cases from the 11th of January to the 10th of February, value of the infected rate (α)

was� 0.191 (90% CI: 0.19-0.192). This corresponds to a mean value of the basic reproduction

number R̂0 � 2:6. Note that this value is lower compared to the value that was estimated using

solely the reported data.

Finally, using the derived values of the parameters α, β, γ, we performed simulations until

the end of February. The results of the simulations are given in Figs 6, 7 and 8. Solid lines

depict the evolution, when using the expected (mean) estimations and dashed lines illustrate

the corresponding lower and upper bounds as computed at the limits of the confidence inter-

vals of the estimated parameters.

As Figs 6 and 7 suggest, the forecast of the outbreak at the end of February, through the

SIRD model is characterized by high uncertainty. In particular, simulations result in an

expected number of� 180,000 infected cases but with a high variation: the lower bound is

at� 45,000 infected cases while the upper bound is at� 760,000 cases. Similarly for the recov-

ered population, simulations result in an expected number of� 60,000, while the lower and

upper bounds are at� 22,000 and� 170,000, respectively. Finally, regarding the deaths,

simulations result in an average number of� 9,000, with lower and upper bounds,� 2,700

and� 34,000, respectively.

Fig 7. Scenario I. Simulations until the 29th of February of the cumulative number of recovered as obtained using

the SIRD model. Dots correspond to the number of confirmed cases from the 16th of January to the 10th of February.

The initial date of the simulations was the 16th of November with one infected, zero recovered and zero deaths. Solid

lines correspond to the dynamics obtained using the estimated expected values of the epidemiological parameters α =

0.191, β = 0.064d−1, γ = 0.01; dashed lines correspond to the lower and upper bounds derived by performing

simulations on the limits of the confidence intervals of the parameters.

https://doi.org/10.1371/journal.pone.0230405.g007
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Thus, the expected trends of the simulations suggest that the mortality rate is lower than the

estimated with the current data and thus the death toll is expected to be significantly less com-

pared with the expected trends of the predictions.

As this paper was revised, the reported number of deaths on the 22th February was 2,344,

while the expected number of the forecast was�4300 with a lower bound of�1,300. Regard-

ing the number of infected and recovered cases by February 20, the cumulative numbers of

confirmed reported cases were 64,084 infected and 15,299 recovered, while the expected trends

of the forecasts were�83,000 for the infected and�28,000 for the recovered cases. Hence,

based on this estimation, the evolution of the epidemic was well within the bounds of our

forecasting.

Scenario II. Results obtained based by taking twenty times the number of

infected and forty times the number of recovered people with respect to the

confirmed cases

For our illustrations, we assumed that the number of infected is twenty times the number of

the confirmed infected and forty times the number of the confirmed recovered people. Based

on this scenario, Fig 9 depicts an estimation of R0 for the period January 16-January 20. Using

the first six days from the 11th of January to the 16th of January, R̂0 results in 3.2 (90% CI: 2.4-

Fig 8. Scenario I. Simulations until the 29th of February of the cumulative number of deaths as obtained using the

SIRD model. Dots correspond to the number of confirmed cases from 16th of January to the 10th of February. The

initial date of the simulations was the 16th of November with one infected, zero recovered and zero deaths. Solid lines

correspond to the dynamics obtained using the estimated expected values of the epidemiological parameters α = 0.191,

β = 0.064d−1, γ = 0.01; dashed lines correspond to the lower and upper bounds derived by performing simulations on

the limits of the confidence intervals of the parameters.

https://doi.org/10.1371/journal.pone.0230405.g008
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Fig 9. Scenario II. Estimated values of the basic reproduction number (R0) as computed by least squares using a

rolling window with initial date the 11th of January. The solid line corresponds to the mean value and dashed lines

to lower and upper 90% confidence intervals.

https://doi.org/10.1371/journal.pone.0230405.g009

Fig 10. Scenario II. Estimated values of case fatality (γ̂) and case recovery (β̂) ratios, as computed by least squares

using a rolling window (see in Methodology). Solid lines correspond to the mean values and dashed lines to lower

and upper 90% confidence intervals.

https://doi.org/10.1371/journal.pone.0230405.g010
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Fig 12. Scenario II. Coefficient of determination (R2) and root mean square error (RMSE) resulting from the

solution of the linear regression problem with least-squares for the recovery rate (β̂).

https://doi.org/10.1371/journal.pone.0230405.g012

Fig 11. Scenario II. Coefficient of determination (R2) and root mean square error (RMSE) resulting from the

solution of the linear regression problem with least-squares for the basic reproduction number (R0).

https://doi.org/10.1371/journal.pone.0230405.g011
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4.0); using the data until January 17, R̂0 results in 3.1 (90% CI: 2.5-3.7); using the data until Jan-

uary 18, R̂0 results in 3.4 (90% CI: 2.9-3.9); using the data until January 19, R̂0 results in 3.9

(90% CI: 3.3-4.5) and using the data until January 20, R̂0 results in 4.5 (90% CI: 3.8-5.3).

It is interesting to note that the above estimation of R0 is close enough to the one reported

in other studies (see in the Introduction for a review).

Fig 10 depicts the estimated values of the case fatality (ĝ) and case recovery (b̂ ratios for the

period January 16 to February 10. The confidence intervals are also depicted with dashed lines.

Note that the large variation in the estimated values of b̂ and ĝ should be attributed to the

small size of the data and data uncertainty. This is also reflected in the corresponding confi-

dence intervals. As more data are taken into account, this variation is significantly reduced.

Thus,using all the (scaled) data from the 11th of January until the 10th of February, the esti-

mated value of the case fatality ratio ĝ now drops to� 0.147% (90% CI: 0.144%-0.15%) while

that of the case recovery ratio is� 0.1 (90% CI: 0.091-0.11). It is interesting also to note that as

the available data become more, the estimated case recovery ratio increases slightly (see Fig

10), while the case fatality ratio (in the total population) seems to be stabilized at a rate

of� 0.15%.

In Figs 11, 12 and 13, we show the coefficients of determination (R2) and the root of mean

squared errors (RMSE), for R̂0 , b̂ and ĝ, respectively.

The computed values of the “effective” per day mortality and recovery rates of the SIRD

model were γ� 0.0005 and β�0.16d−1 (corresponding to a recovery period of� 6 d). Note

that because of the extremely small number of the data used, the confidence intervals have

been disregarded. Instead, for calculating the corresponding lower and upper bounds in our

simulations, we have taken intervals of 20% around the expected least squares solutions.

Fig 13. Scenario II. Coefficient of determination (R2) and root mean square error (RMSE) resulting from the

solution of the linear regression problem with least-squares for the mortality rate (γ̂).

https://doi.org/10.1371/journal.pone.0230405.g013
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Hence, for γ we have taken the interval (0.0004 and 0.0006) and for β, we have taken the inter-

val between (0.13 and 0.19) corresponding to an interval of recovery periods from 5 to 8 days.

Again, we used the SIRD simulator to provide estimation of the infection rate by optimi-

zation setting w1 = 1, w2 = 400, w3 = 1 to balance the residuals of deaths with the scaled num-

bers of the infected and recovered cases. Thus, to find the optimal infection transmission

rate, we used the SIRD simulations with β = 0.16d−1, and γ = 0.0005 and as initial conditions

one infected, zero recovered, zero deaths on November 16th 2019, and ran until the 10th of

February.

The optimal, with respect to the reported confirmed cases from the 11th of January to the

10th of February value of the infected rate (α) was found to be� 0.319(90% CI: 0.318-0.32).

This corresponds to a mean value of the basic reproduction number R̂0 � 2.

Finally, using the derived values of the parameters α, β, γ, we have run the SIRD simulator

until the end of February. The simulation results are given in Figs 14, 15 and 16. Solid lines

depict the evolution, when using the expected (mean) estimations and dashed lines illustrate

the corresponding lower and upper bounds as computed at the limits of the confidence inter-

vals of the estimated parameters.

Again as Figs 15 and 16 suggest, the forecast of the outbreak at the end of February, through

the SIRD model is characterized by high uncertainty. In particular, in Scenario II, by February

Fig 14. Scenario II. Simulations until the 29th of February of the cumulative number of infected as obtained using

the SIRD model. Dots correspond to the number of confirmed cases from 16th of Jan to the 10th of February. The

initial date of the simulations was the 16th of November with one infected, zero recovered and zero deaths. Solid lines

correspond to the dynamics obtained using the estimated expected values of the epidemiological parameters α = 0.319,

β = 0.16d−1, γ = 0.0005; dashed lines correspond to the lower and upper bounds derived by performing simulations on

the limits of the confidence intervals of the parameters.

https://doi.org/10.1371/journal.pone.0230405.g014
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29, simulations result in an expected actual number of�8m infected cases (corresponding to a

~13% of the total population) with a lower bound at�720,000 and an upper bound at�37m

cases. Similarly, for the recovered population, simulations result in an expected actual number

of�4.5m (corresponding to a 8% of the total population), while the lower and upper bounds

are at�430,000 and�23m, respectively. Finally, regarding the deaths, simulations under this

scenario result in an average number of�14,000, with lower and upper bounds at�900 and

�100,000.

Importantly, under this scenario, the simulations shown in Fig 14 suggest a decline of the

outbreak at the end of February. Table 1 summarizes the above results for both scenarios.

We note that the results derived under Scenario II seem to predict a slowdown of the out-

break in Hubei after the end of February.

Discussion

We have proposed a methodology for the estimation of the key epidemiological parameters as

well as the modelling and forecasting of the spread of the COVID-19 epidemic in Hubei,

China by considering publicly available data from the 11th of January 2020 to the 10th of Feb-

ruary 2020.

Fig 15. Scenario II. Simulations until the 29th of February of the cumulative number of recovered as obtained

using the SIRD model. Dots correspond to the number of confirmed cases from 16th of January to the 10th of

February. The initial date of the simulations was the 16th of November, with one infected, zero recovered and zero

deaths. Solid lines correspond to the dynamics obtained using the estimated expected values of the epidemiological

parameters α = 0.319, β = 0.16d−1, γ = 0.0005; dashed lines correspond to the lower and upper bounds derived by

performing simulations on the limits of the confidence intervals of the parameters.

https://doi.org/10.1371/journal.pone.0230405.g015
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By the time of the acceptance of our paper, according to the official data released on the

29th of February, the cumulative number of confirmed infected cases in Hubei was�67,000,

that of recovered was�31,300 and the death toll was�2,800. These numbers are within the

lower bounds and expected trends of our forecasts from the 10th of February that are based on

Scenario I. Importantly, by assuming a 20-fold scaling of the confirmed cumulative number of

the infected cases and a 40-fold scaling of the confirmed number of the recovered cases in the

total population, forecasts show a decline of the outbreak in Hubei at the end of February.

Based on this scenario the case fatality rate in the total population is of the order of�0.15%.

At this point we should note that our SIRD modelling approach did not take into account

many factors that play an important role in the dynamics of the disease such as the effect of the

incubation period in the transmission dynamics, the heterogeneous contact transmission net-

work, the effect of the measures already taken to combat the epidemic, the characteristics of

the population (e.g. the effect of the age, people who had already health problems). Also the

estimation of the model parameters is based on an assumption, considering just the first period

in which the first cases were confirmed and reported. Of note, COVID-19, which is thought to

be principally transmitted from person to person by respiratory droplets and fomites without

excluding the possibility of the fecal-oral route [21] had been spreading for at least over a

month and a half before the imposed lockdown and quarantine of Wuhan on January 23, hav-

ing thus infected unknown numbers of people. The number of asymptomatic and mild cases

Fig 16. Scenario II. Simulations until the 29th of February of the cumulative number of deaths as obtained using

the SIRD model. Dots correspond to the number of confirmed cases from the 16th of November to the 10th of

February. The initial date of the simulations was the 16th of November with zero infected, zero recovered and zero

deaths. Solid lines correspond to the dynamics obtained using the estimated expected values of the epidemiological

parameters α = 0.319, β = 0.16d−1, γ = 0.0005; dashed lines correspond to the lower and upper bounds derived by

performing simulations on the limits of the confidence intervals of the parameters.

https://doi.org/10.1371/journal.pone.0230405.g016
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with subclinical manifestations that probably did not present to hospitals for treatment may be

substantial; these cases, which possibly represent the bulk of the COVID-19 infections, remain

unrecognized, especially during the influenza season [22]. This highly likely gross under-detec-

tion and underreporting of mild or asymptomatic cases inevitably throws severe disease

courses calculations and death rates out of context, distorting epidemiologic reality.

Another important factor that should be taken into consideration pertains to the diagnostic

criteria used to determine infection status and confirm cases. A positive PCR test was required

to be considered a confirmed case by China’s Novel Coronavirus Pneumonia Diagnosis and

Treatment program in the early phase of the outbreak [14]. However, the sensitivity of nucleic

acid testing for this novel viral pathogen may only be 30-50%, thereby often resulting in false

negatives, particularly early in the course of illness. To complicate matters further, the guid-

ance changed in the recently-released fourth edition of the program on February 6 to allow for

diagnosis based on clinical presentation, but only in Hubei province [14].

The swiftly growing epidemic seems to be overwhelming even for the highly efficient Chi-

nese logistics that did manage to build two new hospitals in record time to treat infected

patients. Supportive care with extracorporeal membrane oxygenation (ECMO) in intensive

care units (ICUs) is critical for severe respiratory disease. Large-scale capacities for such level

of medical care in Hubei province, or elsewhere in the world for that matter, amidst this

public health emergency may prove particularly challenging. We hope that the results of our

analysis contribute to the elucidation of critical aspects of this outbreak so as to contain the

Table 1. Model parameters, their computed values and forecasts for the Hubei province under two scenarios: (I) using the exact values of confirmed cases or (II)

using estimations for infected and recovered (twenty and forty times the number of confirmed cases, respectively).

Estimations Symbol Parameter Computed values 90% CI

Scenario I: Exact numbers for confirmed cases

Based on linear regression of the data R0 Basic reproduction number

11-16 Jan 4.80 3.36-6.67

11-17 Jan 4.60 3.56-5.65

11-18 Jan 5.14 4.25-6.03

b̂ case recovery ratio 0.05 0.046-0.055

ĝ case fatality ratio 2.94% 2.9%-3%

Based on the SIRD simulator (Nov 16-Feb 10) R0 Basic reproduction number 2.6 -

α infection rate 0.191 0.19-0.192

Forecast to Feb 29 (Cumulative) infected 180,000 45,000-760,000

recovered 60,000 22,000-170,000

deaths 9,000 2,700-34,000

Scenario II: x20 Infected, x40 recovered of confirmed cases

Based on linear regression of the data R0 Basic reproduction number

11-16 Jan 3.2 2.4-4.0

11-17 Jan 3.1 2.5-3.7

11-18 Jan 3.4 2.9-3.9

b̂ case recovery ratio 0.1 0.091-0.11

ĝ case fatality ratio 0.147% 0.144%-0.15%

Based on the SIRD simulator (Nov 16-Feb 10) R0 Basic reproduction number 2 -

α infection rate 0.319 0.318-0.32

Forecast to Feb 29 (Cumulative) infected 8m 720,000-37m

recovered 4.5m 430,000-23m

deaths 14,000 900-100,000

https://doi.org/10.1371/journal.pone.0230405.t001
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novel coronavirus as soon as possible and mitigate its effects regionally, in mainland China,

and internationally.

Conclusion

In the digital and globalized world of today, new data and information on the novel coronavi-

rus and the evolution of the outbreak become available at an unprecedented pace. Still, crucial

questions remain unanswered and accurate answers for predicting the dynamics of the out-

break simply cannot be obtained at this stage. We emphatically underline the uncertainty of

available official data, particularly pertaining to the true baseline number of infected (cases),

that may lead to ambiguous results and inaccurate forecasts by orders of magnitude, as also

pointed out by other investigators [1, 17, 22].

Supporting information

S1 Table. Reported cumulative numbers of cases for the Hubei region, China for the period

January 11-February 10.

(PDF)

Author Contributions

Conceptualization: Cleo Anastassopoulou, Constantinos Siettos.

Data curation: Cleo Anastassopoulou.

Formal analysis: Lucia Russo, Constantinos Siettos.

Investigation: Athanasios Tsakris.

Methodology: Lucia Russo, Constantinos Siettos.

Writing – original draft: Cleo Anastassopoulou, Constantinos Siettos.

Writing – review & editing: Cleo Anastassopoulou, Athanasios Tsakris, Constantinos Siettos.

References
1. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-

Infected Pneumonia; 2020. Available from: https://doi.org/10.1088%2F0951-7715%2F16%2F2%

2F308.

2. Organization WH. WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China; 2020.

Available from: https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-

pneumonia-cases-in-wuhan-china.

3. Organization WH. Novel coronavirus(2019-nCoV). Situation report 21. Geneva, Switzerland: World

Health Organization; 2020; 2020. Available from: https://www.who.int/docs/default-source/

coronaviruse/situation-reports/20200210-sitrep-21-ncov.pdf?sfvrsn=947679ef_2.

4. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019

novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020. https://doi.org/

10.1016/S0140-6736(20)30251-8

5. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a

new coronavirus of probable bat origin. Nature. 2020. https://doi.org/10.1038/s41586-020-2012-7

6. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99

cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020.

https://doi.org/10.1016/S0140-6736(20)30211-7

7. Patel A, Jernigan D, nCoV CDC Response Team. Initial Public Health Response and Interim Clinical

Guidance for the 2019 Novel Coronavirus Outbreak—United States, December 31, 2019-February 4,

2020. MMWR Morb Mortal Wkly Rep. 2020. https://doi.org/10.15585/mmwr.mm6905e1

PLOS ONE Forecasting of the COVID-19 outbreak

PLOS ONE | https://doi.org/10.1371/journal.pone.0230405 March 31, 2020 20 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0230405.s001
https://doi.org/10.1088%2F0951-7715%2F16%2F2%2F308
https://doi.org/10.1088%2F0951-7715%2F16%2F2%2F308
https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china
https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200210-sitrep-21-ncov.pdf?sfvrsn=947679ef_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200210-sitrep-21-ncov.pdf?sfvrsn=947679ef_2
https://doi.org/10.1016/S0140-6736(20)30251-8
https://doi.org/10.1016/S0140-6736(20)30251-8
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.15585/mmwr.mm6905e1
https://doi.org/10.1371/journal.pone.0230405


8. Hunag C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in

Wuhan, China. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)30183-5

9. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients

With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020. https://doi.org/10.

1001/jama.2020.1585

10. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduc-

tion number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in

the early phase of the outbreak. Int J Infect Dis. 2020.

11. Imai N, Cori A, Dorigatti I, et al. Report 3: Transmissibility of 2019-nCoV. Int J Infect Dis. 2019.

12. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international

spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. 2020.

https://doi.org/10.1016/S0140-6736(20)30260-9

13. Siettos CI, Russo L. Mathematical modeling of infectious disease dynamics. Virulence. 2013; 4(4):295–

306. https://doi.org/10.4161/viru.24041 PMID: 23552814

14. The Johns Hopkins Center for Health Security. Daily updates on the emerging novel coronavirus from

the Johns Hopkins Center for Health Security. February 9, 2020; 2020. Available from: https://hub.jhu.

edu/2020/01/23/coronavirus-outbreak-mapping-tool-649-em1-art1-dtd-health/.

15. The Johns Hopkins Center for Health Security. Coronavirus COVID-19 Global Cases by Johns Hopkins

CSSE; 2020. Available from: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/

bda7594740fd40299423467b48e9ecf6.

16. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The

Lancet Infectious Diseases. 2020; https://doi.org/10.1016/S1473-3099(20)30120-1. PMID: 32087114

17. Wu P, Hao X, Lau EHY, Wong JY, Leung KSM, Wu JT, et al. Real-time tentative assessment of the epi-

demiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020.

Eurosurveillance. 2020; 25(3). https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000044 PMID:

31992388

18. NHC. NHS Press Conference, Feb. 4 2020—National Health Commission (NHC) of the People’s

Republic of China; 2020.

19. Ghani AC, Donnelly CA, Cox DR, Griffin JT, Fraser C, Lam TH, et al. Methods for Estimating the Case

Fatality Ratio for a Novel, Emerging Infectious Disease. American Journal of Epidemiology. 2005; 162

(5):479–486. https://doi.org/10.1093/aje/kwi230 PMID: 16076827

20. MATLAB R2018b; 2018.

21. Gale J. Coronavirus May Transmit Along Fecal-Oral Route, Xinhua Reports; 2020. Available from:

https://www.bloomberg.com/news/articles/2020-02-02/coronavirus-may-transmit-along-fecal-oral-

route-xinhua-reports.

22. Battegay M, Kuehl R, Tschudin-Sutter S, Hirsch HH, Widmer AF, Neher RA. 2019-novel Coronavirus

(2019-nCoV): estimating the case fatality rate—a word of caution. Swiss Medical Weekly. 2020.

PLOS ONE Forecasting of the COVID-19 outbreak

PLOS ONE | https://doi.org/10.1371/journal.pone.0230405 March 31, 2020 21 / 21

https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1016/S0140-6736(20)30260-9
https://doi.org/10.4161/viru.24041
http://www.ncbi.nlm.nih.gov/pubmed/23552814
https://hub.jhu.edu/2020/01/23/coronavirus-outbreak-mapping-tool-649-em1-art1-dtd-health/
https://hub.jhu.edu/2020/01/23/coronavirus-outbreak-mapping-tool-649-em1-art1-dtd-health/
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://doi.org/10.1016/S1473-3099(20)30120-1
http://www.ncbi.nlm.nih.gov/pubmed/32087114
https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000044
http://www.ncbi.nlm.nih.gov/pubmed/31992388
https://doi.org/10.1093/aje/kwi230
http://www.ncbi.nlm.nih.gov/pubmed/16076827
https://www.bloomberg.com/news/articles/2020-02-02/coronavirus-may-transmit-along-fecal-oral-route-xinhua-reports
https://www.bloomberg.com/news/articles/2020-02-02/coronavirus-may-transmit-along-fecal-oral-route-xinhua-reports
https://doi.org/10.1371/journal.pone.0230405

